Learning from Evaluations:
The HarvestPlus Orange-Fleshed Sweet Potato Project in Mozambique and Uganda

Presented by
Daniel O. Gilligan
International Food Policy Research Institute (IFPRI)

New Delhi, India

February 11, 2011
Overview

• The role of evaluations: learning what works and why

• Findings of evaluation of a project to disseminate provitamin-A-rich orange-fleshed sweet potatoes to reduce vitamin-A deficiency

• Implications for cost effectiveness and scaling up
Impact evaluations based on field experiments are an essential learning tool in development economics and public health:

- Evaluation design: To ‘randomize’ or not to randomize?
- Well designed evaluations can identify which program components are effective and why

Evaluations are useful for studying agricultural interventions with explicit nutrition and health outcomes:

- Can attribute causal impacts of agriculture interventions on health outcomes
- Generalizability can be an issue
 - Show findings not driven mostly by local context
 - Calls for multi-country studies or repeated experiments
Evaluating the Impact of Biofortification

• The HarvestPlus Orange-Fleshed Sweet Potato Project
 • disseminate provitamin-A-rich orange-fleshed sweet potato (OFSP) as a strategy to increase vitamin A intakes and reduce vitamin A deficiency
 • OFSP given to 24,000 households in Uganda and Mozambique from 2006 to 2009
 • viability as nutrition intervention depends on crop adoption and diffusion
 • $450 million spent annually on vitamin A supplementation programs

<table>
<thead>
<tr>
<th>Site Selection</th>
<th>Mozambique</th>
<th>Uganda</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFSP in the diet</td>
<td>secondary staple</td>
<td>primary staple</td>
</tr>
<tr>
<td>Vitamin A deficiency in children under 5</td>
<td>71%</td>
<td>28%</td>
</tr>
</tbody>
</table>
Project Components

Three-pronged OFSP intervention

i. **seed systems**: disseminate OFSP vines, farmer trainings

ii. **demand creation**: trainings on nutrition benefits of consuming vitamin A

iii. **marketing**: including product development

• Varied project intensity to study cost effectiveness

 • **Model 1**: Intensive two-year intervention with vine distribution and trainings

 • **Model 2**: Less intensive

 • identical to Model 1 in year 1

 • little activity or costs in year 2

• Differences in implementation

 • Mozambique: annual OFSP vine distributions

 • Uganda: one OFSP vine distribution in 2007
Evaluation Design

• Cluster randomized design; baseline and endline surveys

• Randomly assigned clusters to Model 1, Model 2, and Control
 – Mozambique: households in church groups (n=703)
 – Uganda: households in farmer groups (n=1594)

• Survey included several components (at least 2 rounds)
 – Socioeconomic Survey
 – Dietary Intake and Nutrition Survey

• In addition to outcomes presented here today, Impact Report (2010) assessed impact on
 – agricultural and nutrition knowledge retention
 – agricultural, nutrition and marketing practices
 – household consumption
 – child feeding practices
HarvestPlus OFSP Project Partners

• OFSP Project Implementation Partner Organizations
 • HarvestPlus: Lead
 • International Potato Center (CIP)
 • Natural Resources Institute (NRI) at University of Greenwich

Mozambique
• World Vision
• Helen Keller International (HKI)

Uganda
• CIP
• VEDCO
• PRAPACE
• FADEP

• OFSP Impact Report (July, 2010) coauthors
 • Alan de Brauw1, Patrick Eozenou2, Daniel O. Gilligan1, Christine Hotz2, Neha Kumar1, Cornelia Loechl3, Scott McNiven4, J.V. Meenakshi2, and Mourad Moursi2

1International Food Policy Research Institute; 2HarvestPlus; 3International Potato Center; 4University of California, Davis.
The project successfully promoted OFSP in Mozambique and Uganda.

Impact on OFSP Adoption

- Estimates are average impacts from Model 1 and Model 2. There was no statistically significant difference between Model 1 and Model 2 adoption rates in either country.

![Bar chart showing OFSP adoption rates in Mozambique and Uganda](image)

- % control group farmers adopting OFSP, 2009
- % increase in project farmers adopting OFSP, 2009
Share of OFSP in sweet potato area

Mozambique, 2006-2009

- Model 1: ΔM1 = 54.2%
- Model 2: ΔM2 = 56.7%
- Control: ΔC = -0.1%

Impact:
- M1: 54.3%***
- M2: 56.8%***

Uganda, 2007-2009

- Model 1: ΔM1 = 47.6%
- Model 2: ΔM2 = 42.9%
- Control: ΔC = 1.8%

Impact:
- M1: 45.8%***
- M2: 41.1%***

Impact on OFSP Land Area Cultivated

- Project increased share of OFSP in sweet potato area cultivated:
 - by 54-57 percentage points in Mozambique
 - by 41-46 percentage points in Uganda

- Households substituted OFSP for white or yellow SP
 - limited area expansion
 - improves micronutrient quality of dietary staples
Impact on Vitamin A Intakes, Children Age 6-35 Months

Mozambique, 2006-2009

<table>
<thead>
<tr>
<th>Model</th>
<th>Baseline</th>
<th>End of project</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td>ΔM1 = 222</td>
<td>M1: 241 μg RAE/d **</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td>ΔM2 = 183</td>
<td>M2: 202 μg RAE/d **</td>
</tr>
<tr>
<td>Control</td>
<td>ΔC = -19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uganda, 2007-2009

<table>
<thead>
<tr>
<th>Model</th>
<th>Baseline</th>
<th>End of project</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td>ΔM1 = 137</td>
<td>M1: 192 μg *</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td>ΔM2 = 169</td>
<td>M2: 224 μg **</td>
</tr>
<tr>
<td>Control</td>
<td>ΔC = -55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Project increased vitamin A intake of young children**
 - by 202-241 μg RAE/day in Mozambique
 - by 192-224 μg RAE/day in Uganda

- **Large effect**: equivalent to child’s daily requirements of vitamin A (210 μg RAE/day)

- **Increased vitamin A intake due to OFSP**
 - OFSP 78% of total vitamin A intake in Mozambique
 - OFSP 53% of total vitamin A intake in Uganda
Cost Effectiveness of OFSP Models

- Model 2 is much more cost effective than Model 1
 - No significant difference between Model 1 and Model 2 in OFSP adoption, nutrition knowledge, increase in vitamin A intakes
 - Model 2 was cheaper to implement by almost one-third

- Further cost savings from Model 2 are possible

<table>
<thead>
<tr>
<th>Cost per Beneficiary</th>
<th>Mozambique</th>
<th>Uganda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Average Cost per Beneficiary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td>97</td>
<td>65</td>
</tr>
<tr>
<td>With cost savings, broad diffusion</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>Marginal Cost per Beneficiary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>With cost savings, broad diffusion</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Ongoing Research from OFSP Evaluation

• Role of risk aversion and gender differences in access to land on OFSP adoption

• Role of social networks in adoption and diffusion through access to OFSP and nutrition information

• Search for ‘Model 3’
 Plans to scale up with lighter integrated intervention, greater focus on crop diffusion